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Summary ers went a step further by inferring population admix-
ture (Wijsman 1984, 1986; Bowcock et al. 1991b).

Our goal is to infer, from human genetic data, general More recently, data for individuals have begun to ac-
patterns as well as details of human evolutionary his- crue. These data make possible the consideration of mul-
tory. Here we present the results of an analysis of genetic tiple nucleotide sites, linked or unlinked, for many indi-
data at the level of the individual. A tree relating 144 viduals and, hence, the direct comparison of either
individuals from 12 human groups of Africa, Asia, Eu- haplotypes or sets of genotypes. Such data may enable
rope, and Oceania, inferred from an average of 75 DNA one to obtain greater detail regarding population separa-
polymorphisms/individual, is remarkable in that most tions, gene flow, and population substructure. They also
individuals cluster with other members of their regional make less essential the assignment of individuals to pop-
group. In order to interpret this tree, we consider the ulations prior to analyses. Currently existing data sets
factors that influence the tree pattern, including the for individuals include DNA sequences and haplotypes,
number of genetic loci examined, the length of popula- microsatellite-polymorphism genotypes (also known as
tion isolation, the sampling process, and the extent of ‘‘short tandem repeats’’ [STRs]), and RFLP genotypes.
gene flow among groups. Understanding the impact of The latter are the focus of this paper. We examine an
these factors enables us to infer details of human evolu- inferred individual tree—that is, a tree inferred from
tionary history that might otherwise remain undetected.

the set of genotypes of individuals. We proceed by inter-
Our analyses indicate that some recent ancestor(s) of

preting this tree in light of a simulation study.
each of a few of the individuals tested may have immi-

Figure 1 provides a schematic summary of possiblegrated. In general, the populations within regional
relationships between a population history (fig. 1a) andgroups appear to have been isolated from one another
a tree inferred from data for individuals (fig. 1b–d).for õ25,000 years. Regional groups may have been iso-
Much of this paper is concerned with the extent to whichlated for somewhat longer.
inferred trees for individual data fit into the category of
consistency either at a regional level (fig. 1c) or at both
the regional and the population levels (fig. 1d). By theIntroduction
term ‘‘consistency’’ we mean here that the tree inferred
from the data for individuals corresponds with the pop-For decades, population-genetic data have held the
ulation affiliation of those individuals; that is, all indi-promise of providing insight into human evolutionary

history. For much of this period, individuals were tested viduals of each group fall into a single cluster in the tree.
for very few genetic loci. Researchers therefore summa- The relationship between population history and a tree
rized these data at the population level, inferring trees inferred from data for individuals depends on many fac-
of populations on the basis of allele frequencies (Ed- tors, as discussed below. In a general sense, this ap-
wards and Cavalli-Sforza 1964; Cavalli-Sforza 1967; proach parallels that of Cockerham (1969, 1973), who
Cavalli-Sforza and Edwards 1967; Nei and Roychoud- (along with authors mentioned therein) considered a hi-
hury 1974). They then interpreted such trees in terms of erarchical structure of individuals within isolates within
population relationships and major human migrations. subpopulations and examined the correlations between
Understanding that a strictly bifurcating tree is unlikely genes sampled from within each of these levels.
to reflect human history very accurately, a few research- The first segment of DNA sequence to be studied in

detail, for samples from individuals of several human
populations, was the mitochondrial genome. Aquadro
and Greenberg (1983), Johnson et al. (1983), Cann etReceived July 15, 1996; accepted for publication June 10, 1997.
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For at least two reasons, only a few segments of the
autosomal nuclear genome have been sequenced for a
large number of individuals. First, long stretches (several
kilobases) of nuclear DNA must usually be examined in
order to detect more than one or two variable sites.
Second, the sequencing of alleles of diploid nuclear genes
is more challenging in that cloning is generally required.
Among the segments that have been examined closely
are the HLA complex of loci on chromosome 6 and the
b-globin gene cluster on chromosome 11. These data
are possibly more difficult to interpret than mtDNA se-
quences, because gene conversion and recombination
within the loci may have taken place. Although a few
haplotypes appear to be population specific, trees in-
ferred from HLA sequences are essentially inconsistent
with population affiliation (Belich et al. 1992). In fact,
these gene trees are often inconsistent even at the speciesFigure 1 Schematic representation of consistency and inconsis-
level (within-species divergence between individuals istency between regional or population affiliation (a) and corresponding

gene or individual trees (b–d). a, Hypothetical population history. sometimes greater than between-species divergence), in-
A parent population separates into two regional groups (circles vs. dicating that natural selection may have played a role in
triangles), which, in turn, separate into two populations (blackened generating and maintaining the diversity that we observe
vs. unblackened symbols). b–d, Hypothetical trees inferred from data

today (Lawlor et al. 1988; Ayala 1995). Haplotypes offor individuals of four populations in a. b, Clustering inconsistent
the b-globin locus are generally found in multiple popu-with both regional and population affiliation. c, Clustering consistent

at the regional level but not at the population level. d, Clustering lations (Wainscoat et al. 1986), indicating either exten-
consistent at both the regional level and the population level. A fourth sive gene flow among populations, the influence of natu-
possibility, consistency at the population level but not at the regional ral selection (Thompson 1975), that haplotypes predate
level, is not shown.

population separations, or some combination of these
factors.

STR, or microsatellite, polymorphisms have providedsearchers have found population-specific mutations,
trees inferred from these sequences or haplotypes are the opportunity for consideration of a large number of

unlinked loci for each of many individuals. Bowcock etgenerally inconsistent with population affiliation; that is,
sequences very often cluster most closely with sequences al. (1994) typed individuals from 14 populations, for 30

microsatellite markers (polymorphisms). They estimatedobtained from samples of a different population (fig.
1b). One plausible explanation for this inconsistency genetic distances between individuals, considering the

level of allele sharing between individuals. From thesebetween the mtDNA gene tree and population history
is that much of the polymorphism observed for mtDNA genetic distances they inferred a tree of individuals. The

level of consistency between this tree and populationprobably predates population separations (Takahata
1989). Furthermore, because the mitochondrial genome affiliation is relatively high; that is, the tree is close to

the pattern shown in figure 1d. Most Asian samplesundergoes no recombination, the 16,569-bp genome be-
haves evolutionarily as a single locus. Inferences from clustered together, as did most European samples, most

Amerindian samples, and most African samples. A moreany one such locus lack robustness (Pamilo and Nei
1988). detailed discussion of the level of consistency is given

below.Although the known polymorphisms of the Y chro-
mosome are very few, this chromosome might poten- The current study involves a large number of nuclear-

DNA genetic markers: RFLPs. We considered genotypestially be studied as has the mitochondrial genome; that
is, gene trees might be inferred. Of the known Y-chro- for £100 polymorphisms of 12 individuals from each

of 12 populations. These polymorphisms are believedmosome polymorphisms, at least two appear to be conti-
nent specific. A CrT transition is limited to Amerindian to have a low mutation rate, between 1005/generation

(for electrophoretic loci; Neel et al. 1986) and 1007/males (Underhill et al. 1996), whereas an ArG transi-
tion is limited to African males (Seielstad et al. 1994). generation (for nucleotide sites; Nei 1987). Eighty-four

of the markers are biallelic, and most alleles are foundOther haplotypes, such as ALU/ chromosomes, are
found in only a few geographic locations (Hammer in all populations. This is in contrast with microsatellite

(i.e., STR) loci, which have a much higher mutation1994; Hammer and Horai 1995). Additional polymor-
phisms will reveal the extent of agreement between a Y- rate (on the order of 1003/locus/generation; Weber and

Wong 1993).chromosome gene tree and population affiliation.
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Given such a data set, we can ask a number of ques- living in Santa Ana, CA) were collected by K. Dumars.
Samples of Chinese individuals born in mainland Chinations. First, is an individual tree inferred from these data

consistent with regional and population affiliation (as and living in the San Francisco Bay Area were collected
by L. Wang and L. L. Cavalli-Sforza. The Europeansin fig. 1d)? What does the extent of consistency between

these two trees tell us about the time of separation of sampled were local residents of the Stanford University
and Yale University areas and were primarily northernthe groups studied, the level of gene flow among the

groups, and the degree of substructure within these Europeans. The Italian sample was collected by A. Pi-
azza and colleagues, from the town of Trino in northerngroups? Have sufficiently many genetic markers been

tested to allow us draw conclusions? In order to inter- Italy. This sample has been described in detail by Ma-
tullo et al. (1994). The Japanese sample, collected by L.pret consistency or the lack thereof, we need to consider

mode of inheritance, mutation rates, mutational mecha- Wang and A. Lin in 1986, consists of individuals born
in Japan and living in the San Francisco Bay area. Thenisms, population sizes, sample sizes, and number of

loci tested. We have obtained, through simulation, ex- Melanesian samples, from Bougainville in the Solomon
Islands, were collected by J. Friedlander. The Melane-pectations regarding consistency between individual

trees and population histories, given the number of loci sian sample of 12 includes two pairs of related individu-
als (a parent-offspring pair and an uncle-niece pair), be-examined, sample sizes, population sizes, and popula-

tion-separation times. We use the results of this simula- cause data for 12 unrelated individuals were
unavailable. The Biaka Pygmies from the Central Afri-tion study to interpret the trees of individuals inferred

here. can Republic, sometimes called ‘‘western Pygmies,’’
have been shown to be a 70%–75% admixture (of un-
known date) with other Africans, mostly of Nilo-Sa-Subjects and Methods
haran or Bantu origin (Wijsman 1986; Cavalli-Sforza et

Twelve individuals from each of the 12 groups de- al. 1994, p.90). These samples were collected by L. L.
scribed below were included in this study. Selection of Cavalli-Sforza and B. Hewlett. The Mbuti Pygmies of
individuals for analysis was based on the number of the Ituri forest in northeastern Zaire appear to be the
genotypes available. All individuals are unrelated, ex- least admixed with neighbors among the Pygmy popula-
cept for two pairs of Melanesians. Their population af- tions. They are also known as the ‘‘eastern Pygmies.’’
filiation was determined in any of a number of ways: These samples also were collected by L. L. Cavalli-
through self-identification, consideration of language or Sforza and B. Hewlett. The Senegalese sample is from
geographic location, the tracing of the individual’s gene- the Niokolonke of the Mandenka population in the east-
alogy, or a combination of these. The term ‘‘population’’ ern part of the Senegal and was collected in 1990 by A.
is used here loosely and includes both broadly defined Langaney and colleagues (Tiercy et al. 1992; Poloni et
groups, such as northern Europeans (Bowcock et al. al. 1995).
1987), and more narrowly defined groups, such as the

Sample Processing and DNA AnalysisAfrican Pygmies (collected in single villages). The set of
populations includes the regions of Africa, Asia, Europe, For all except the Australian and New Guinean sam-
and Oceania but not the Americas. Genotypes for £100 ples, blood was drawn and Epstein-Barr virus transfor-
RFLPs were obtained on the 144 individuals. Each indi- mation was performed on the B cells, as described else-
vidual, therefore, is represented by a set of genotypes where (Anderson and Gusella 1984; Bowcock et al.
that we call a ‘‘multilocus genotype’’; these multilocus 1987). The extraction of DNA from cell lines was per-
genotypes were the basis for the analyses discussed be- formed as described by Bowcock et al. (1987). Austra-
low. lian and New Guinean DNA samples were extracted

from placentas, as discussed by Stoneking et al. (1990).
Sources of the Population Samples Southern blotting, hybridization, and autoradiography

were then performed for all samples (Bowcock et al.The 12 populations considered here are Australians,
Cambodians, Chinese, Europeans, Italians, Japanese, 1987). Descriptions of the 100 polymorphisms tested

have been given elsewhere (Bowcock et al. 1987, 1991a).Nasioi Melanesians, coastal New Guineans, highland
New Guineans, Biaka Pygmies, Mbuti Pygmies, and Sen- Of these polymorphisms, 84 are biallelic among the 144

individuals whereas 8 reveal 3 alleles; the remaining 8egalese Mandenka. Australian and New Guinean DNA
samples were provided by A. Wilson; these have also polymorphisms reveal 4–10 alleles. Of the 100 poly-

morphisms, some are very closely linked: a total of 73been described elsewhere (Cann et al. 1987; Stoneking
et al. 1990). The New Guineans include 12 individuals independent loci (42 genes and 31 anonymous DNA

segments) were considered.from the highland regions and 12 individuals from the
coastal areas of Papua New Guinea. Cambodian sam- Although not all individuals were tested for all poly-

morphisms, all calculations involving any particular pairples (from Khmer individuals born in Cambodia and
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Table 1

Number of Markers per Pair of Individuals

MEAN { SD NO.
OF MARKERS PER MEAN (above the Diagonal) AND SD (below the Diagonal) NO. OF MARKERS, FOR PAIR OF POPULATIONS

PAIR OF

INDIVIDUALS CAR ZAI CHI MEL NEU JPN AUS NGh NGc CAM SEN TRO

CAR 84.9 { 7.1 88.3 83.4 84.6 57.7 75.1 72.9 74.4 75.8 37.8 70.2 66.8
ZAI 91.9 { 2.3 5.6 86.9 88.0 59.3 77.8 75.4 77.0 78.4 38.8 72.5 68.9
CHI 83.8 { 6.5 6.8 5.3 83.5 57.1 74.0 72.1 73.3 74.8 37.1 69.5 66.2
MEL 86.2 { 4.7 5.9 4.1 6.5 58.8 76.6 74.3 75.9 77.4 38.7 71.6 68.7
NEU 49.3 { 5.0 4.3 4.1 5.3 4.6 52.6 53.3 54.0 55.3 26.8 52.2 49.6
JPN 76.8 { 2.8 4.0 2.5 5.1 3.4 4.2 73.5 75.5 76.9 39.6 66.9 66.3
AUS 76.1 { 4.3 4.9 4.0 5.6 4.9 4.8 3.9 77.1 78.1 36.3 67.1 66.2
NGh 79.4 { 1.5 3.4 1.8 4.7 3.2 4.1 2.2 3.7 80.4 38.0 68.3 68.6
NGc 81.8 { .4 3.2 1.5 4.5 3.0 3.9 1.9 3.6 1.2 38.8 69.6 69.8
CAM 40.6 { 1.4 1.9 1.8 2.9 1.8 2.4 1.4 2.2 .6 .4 36.4 35.9
SEN 73.8 { 1.3 2.8 1.8 4.0 3.0 4.4 1.9 3.6 1.5 1.0 .9 64.7
TRO 71.7 { .8 2.6 1.6 4.2 2.3 3.8 1.6 3.4 1.1 .6 .3 1.0

a CAR Å Central African Republic Pygmy; ZAI Å Zaire Pygmy; CHI Å Chinese; MEL Å Melanesian; NEU Å northern European; JPN Å
Japanese; AUS Å Australian; NGh Å New Guinea highland; NGc Å New Guinea coastal; CAM Å Cambodian; SEN Å Senegalese; and TRO
Å Trino Italian.

of individuals were performed considering all markers considered, thereby eliminating any artificial consistency
due to input order. We partitioned the latter tree intothat had been tested for that pair of individuals. Table

1 gives both the average number of markers considered major clusters by dividing the tree along its longer inter-
nal branches. As stated above, a tree is considered con-for pairs of individuals from within each population and

the average number of markers considered for pairs of sistent, at some level, if all individuals of a particular
sample or set of samples form a single cluster (monophy-individuals from two different populations.
letic group) in the tree and if no other individuals are

Genetic Distance found in this cluster (see fig. 1). In a perfectly consistent
The genetic difference between each pair of individu- tree, therefore, each population forms a single, separate

als, m and m�, was summarized by means of an allele- cluster (fig. 1d). We have not attempted to quantify the
sharing distance, D(m,m�) , as follows: level of consistency.

We compared the tree inferred from RFLP genotypes
to a tree inferred, in a similar manner, from microsatel-D(m,m�) Å 1

l
∑
l

jÅ1

d(m,m�)j ,
lite loci (Bowcock et al. 1994). Because only a subset of
individuals from a subset of populations was considered
in both studies, we compared the tree positions of thesewhere l is the number of loci for which both individuals
individuals only. We asked several questions: Which treehave been tested, and d(m,m�)j Å 0 if the individuals have
has the greatest consistency with population affiliation?identical genotypes at locus j (e.g., AA:AA or AB:AB),
Are any individuals outliers in both trees? Are there any.5 if one individual has only a single allele in common
pairs of individuals who cluster in both trees?with the other individual (e.g., AB:AA or AB:AC), and

1.0 if the individuals have no alleles in common (e.g.,
Very Recent Immigration EventsAA:BB). In this manner, a 144 1 144 interindividual

In order to determine whether some of the recent an-genetic-distance matrix was generated.
cestors of any of the 144 individuals may have immi-

Tree Inference grated to their current population, we performed two
types of tests. We first performed tests for each individ-We inferred trees of individuals for each pair of the

12 populations, from the genetic distances, according to ual, in order to assess whether that individual or any
recent ancestor(s) had immigrated from a particularthe neighbor-joining algorithm (Saitou and Nei 1987).

We also inferred a tree relating all of the 144 individuals. population. The test compared the probability under
the hypothesis that his or her multilocus genotype wasThe Jumble option of the NEIGHBOR program

(Felsenstein 1989) was invoked; this option randomizes derived from the individual’s population versus the
probability under the hypothesis that the multilocus ge-the order in which the individuals in the input file are
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notype was derived from another population (Shriver et the first, because no explicit alternative hypothesis is
being tested.al. 1997; Rannala and Mountain, in press). Specifically,

for each individual m for each locus j (with kj alleles),
Simulation Studywe calculated the probability of his or her genotype

(Xijm), given the allele frequencies (xji) in that individu- We performed a simulation study in order to facilitate
the interpretation of individual trees such as those in-al’s population i:
ferred from multilocus RFLP genotypes. Specifically, we
considered samples of size n that were drawn from two
populations, of size N, that had been isolated from onePr(XijmÉxji) Å �x2

hji if Xijm Å hh

2xhjixgji if Xijm Å hg
,

another for time t (measured in units of 2N generations).
We fixed the number of biallelic genetic loci under con-
sideration. We used a coalescent approach to simulatefor all h Å 1, 2, . . . , kj and g Å 1, 2, . . . , kj where g

x h and xhji is the frequency of allele h at locus j in the evolutionary process: for each of the two popula-
tions, for each locus, we generated a coalescent tree forpopulation i. The probability of the individual’s set of

genotypes was then the product of these single-locus the sample of 2n genes (Hudson 1990).
In order to simulate changes in population size, weprobabilities. We similarly calculated the probability of

the individual’s set of genotypes, given the allele frequen- followed the suggestion of Hudson (1990). He outlines
a coalescent approach to simulation of a sudden changecies in one of the other populations i�. Our test statistic

was the ratio of these two probabilities. In performing in population size. In these cases, time is scaled in terms
of 2N generations, where N is the current effective popu-this test, we assumed that all genetic loci under consider-

ation are in linkage equilibrium (Rannala and Moun- lation size (at time t Å 0). We considered 2-fold, 5-fold,
and 10-fold population expansions at time te in the past.tain, in press).

We approximated the null distribution of the ratios Having generated a coalescent tree for each popula-
tion, either with or without population expansions, weby means of a Monte Carlo procedure (Rannala and

Mountain, in press). Specifically, we generated 2,500 truncated each tree at time t in the past, thereby generat-
ing a set of genes ancestral to the present-day sample,‘‘individuals’’ (sets of genotypes for multiple loci), given

the allele frequencies of the population. For each of these drawn from the parent population at time t. In order to
assign genotypes to the n individuals of each present-daysets of genotypes, we calculated a ratio of posterior

probabilities. We then used this distribution to estimate sample, we first chose, randomly (uniform distribution),
allele frequencies for the genes of the parent populationthe probability of the observed ratio under the null hy-

pothesis of no recent immigration. This procedure en- at time t. All genes present in the parent sample at time
t were randomly assigned an allelic type on the basis ofabled us to identify those individuals whose genotypes

were significantly more likely (at the 1% level) to have these allele frequencies. We assumed the mutation rate
at these loci to be so low as to be negligible. This as-been derived from another population than would be

expected on the basis of population-allele frequencies. sumption is likely to be valid, given that the great major-
ity of the alleles at the RFLP loci are believed to haveWe also performed power calculations for each individ-

ual, to determine whether the genotypes and allele fre- arisen prior to the initial divergence among the ancestors
of extant, modern humans (Mountain and Cavalli-quencies provide sufficient statistical power to detect

individuals with some immigrant ancestors. For further Sforza 1994). Furthermore, for most polymorphisms, all
alleles are found in most populations. Therefore, in thedetails of the test, see the work of Rannala and Moun-

tain (in press). Note that, for this test, either the source simulation, all descendants of an ancestral gene present
at time t received the allelic type of that ancestral gene.population or a population closely related to the source

population must be included. Genotypes for n individuals from each of the two popu-
lations were generated by random pairing of the 2nThe second test examined the probability that each

individual’s genotype was drawn from his or her popula- genes present at time t Å 0. We retained only those cases
for which polymorphism remained in the two samplestion, where that population is defined by its set of allele

frequencies. In order to assess the significance of this to the present time (t Å 0).
From the set of genotypes for these 4n simulated indi-probability, we used a Monte Carlo approach, generat-

ing 1,000 random ‘‘individuals’’ by drawing multilocus viduals, we estimated allele-sharing genetic distances be-
tween individuals. From these distances we then inferredgenotypes based on the population’s allele frequencies.

For each individual, we calculated the probability that a tree. Finally, we examined the consistency of this tree;
a tree with all individuals of each sample falling into ahis or her genotype was drawn from the population.

We then compared the observed probability with the single cluster was considered consistent (fig. 1d); any
other configuration was considered inconsistent. Fordistribution under the null hypothesis of no recent immi-

gration. This test is more simple but less powerful than each set of parameters, we performed 1,000 simulation
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runs; for example, for the case of 100 loci with a given
separation time t, we generated 100,000 total pairs of
coalescent trees. We then determined the proportion of
these 1,000 runs that resulted in consistent trees (as in
fig. 1d).

Results of Simulation Study
We found that the number of loci tested had a strong

impact on consistency. Consideration of only 50 loci led
to a probability of consistency õ.35, for samples of size
10 from two populations that had been isolated for time,
t Å .1 (corresponding to 2,000 generations, for popula-
tions of effective size 10,000). Consideration of 100 loci,
however, increased this probability to Ç.75, whereas
consideration of 1,000 loci increased the probability to
Ç.99 (fig. 2a). If we assume that human generations are
of length 25 years, this result implies that, even if two
populations are isolated from one another for as long
as 50,000 years, 50 loci—and even 100 loci—are too
few to allow us to expect perfect consistency between the
tree and population affiliation. For shorter separation
times, we are even less likely to observe consistency.
Once the time of separation is as large as t Å .2 (in
terms of 2N generations), however, even as few as 50
loci are very likely (P ú .9) to lead to consistent trees.
The number of individuals sampled per population plays
a role as well, but, although increasing the number of
individuals from 10 to 25 does reduce consistency some-
what, this effect is less dramatic than that of the number
of loci (J. L. Mountain, unpublished simulation results).

We also explored the impact that population expan- Figure 2 Probability of consistency of tree of 10 individuals
sions have on the consistency between an inferred indi- from each of two populations, obtained through simulation. Probabili-

ties are given for simulations considering genotypes for 50, 100, 250,vidual tree and the population affiliation of individuals
or 1,000 polymorphic loci/individual. a, Constant population sizes(fig. 2b). This impact depends highly on the time, te , as
over time. Populations are assumed to have been completely isolatedwell as on the size of the expansion. Recent expansion from one another for a time period scaled in terms of 2N generations,

(wherein both populations have reached size N only where N is the current effective population size of each of the two
recently) has the greatest impact. Consider the case of populations. t Å .1, for example, corresponds to 50,000 years, under

the assumptions that two populations have effective sizes of 10,00075 loci examined for each of 10 individuals from each
individuals and that generations are of length 25 years. b, Expandingof two populations that separated at time t Å .05 in the
populations. Each population is assumed to have reached its currentpast. Without any expansion, the probability of consis- effective size N after a 2-fold, 5-fold, or 10-fold expansion at time te

tency is very low (Ç6%). If instead the populations both in the past. Simulations were performed considering 75 loci and under
doubled in size at time te Å .04, the probability increases the assumption that the two populations separated at time t Å .05 in

the past. For further details, see text.to nearly 50% (fig. 2b). If the sizes increased 10-fold
more recently than time te Å .025 ago, the probability
of consistency is essentially 1.0 (fig. 2b). Thus, even if
populations have not been isolated from one another in figure 3 and table 2. The Melanesian and New Guinea
for long, if they have only recently reached their current highland samples have the smallest average between-
size, then trees inferred for individuals from these popu- individual distances, whereas the two European samples
lations are likely to be consistent. (northern European and Trino) have the largest average

between-individual distances (table 2). The Australian
sample has the largest range of between-individual dis-Results
tances (fig. 3). The smallest average distances are found

Genetic Distances from Multilocus Genotypes for individuals from within each of two clusters of popu-
lations: individuals from the three African samples andFor each pair of the 144 individuals, we estimated a

genetic distance. These 10,296 distances are summarized individuals from the three Australian/New Guinean
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Figure 4 Summary of trees inferred for individuals from each
pair of populations. C Å tree of 24 individuals, which is consistent
with population affiliation (fig. 1d); and x Å tree of 24 individuals,
which is inconsistent with population affiliation. Triangles include
within-region results; and rectangles include between-region results.

tance (.386 { .045), for example, is for the comparison
of the Mbuti Pygmy sample from Zaire with the sample
from Cambodia.

Inferred Individual Trees
Two populations/tree.—For each pair of populations,

we inferred a tree of the 24 individuals, from the geneticFigure 3 Histograms of genetic distances, D(m,m�) , between
distances. Results of this analysis are provided in figurepairs of individuals (m and m�) in each sample. Abbreviations are as

in table 1. 4. For 11 of 13 within-region cases, the trees are incon-
sistent. The exceptions are the trees of Melanesian and
New Guinean individuals. Of the 53 between-region
cases, only 15 are inconsistent. All of these cases involvesamples are most genetically similar to one another (ta-

ble 2). The smallest average distance (.238 { .045), for European and/or Australian samples.
All populations.—From the genetic distances betweeninstance, is for the comparison of the two New Guinea

samples, as might be expected. The largest average dis- individuals, we inferred a tree according to the neighbor-
joining algorithm (fig. 5). We have labeled nine clusterstances are found for comparisons of individuals of Afri-

can versus Oceanic, African versus Asian, and Oceanic in the tree, each defined by an internal branch (A-I).
Although these clusters are somewhat arbitrary, otherversus Asian samples (table 2). The largest average dis-

Table 2

D(m,m�) between Individuals

MEAN { SD MEAN (above the Diagonal) AND SD (below the Diagonal) D(m,m=), FOR PAIR OF POPULATIONS

D(m,m=) BETWEEN

INDIVIDUALS CAR ZAI CHI MEL NEU JPN AUS NGh NGc CAM SEN TRO

CAR .249 { .045 .265 .371 .333 .318 .349 .364 .358 .361 .378 .259 .347
ZAI .253 { .032 .032 .373 .343 .321 .353 .365 .352 .355 .386 .267 .346
CHI .295 { .039 .040 .031 .326 .354 .296 .363 .359 .345 .305 .363 .349
MEL .215 { .029 .037 .033 .034 .325 .313 .293 .274 .267 .329 .330 .335
NEU .303 { .040 .044 .045 .046 .038 .339 .353 .353 .344 .361 .314 .319
JPN .284 { .038 .045 .037 .045 .039 .050 .345 .342 .335 .304 .327 .342
AUS .274 { .061 .039 .036 .037 .043 .052 .046 .248 .269 .368 .362 .359
NGh .207 { .029 .042 .035 .040 .047 .054 .043 .053 .238 .358 .339 .368
NGc .245 { .043 .037 .032 .042 .041 .048 .043 .048 .045 .332 .355 .354
CAM .296 { .063 .053 .045 .059 .058 .062 .060 .051 .054 .052 .365 .361
SEN .235 { .028 .036 .036 .036 .034 .047 .040 .040 .036 .029 .055 .332
TRO .325 { .044 .050 .039 .048 .051 .054 .056 .048 .046 .046 .058 .043

NOTE.—Abbreviations are as defined in footnote to table 1.
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Figure 5 Tree inferred from between-individual genetic distances, according to the neighbor-joining algorithm (Saitou and Nei 1987). A
total of 144 individuals from 12 samples of four world regions are represented. Small curved bars crossing interior branches partition the tree
into nine clusters (A-I, excluding three outliers), corresponding to those of table 4. Lowercase letters (a–x) indicate those individuals whose
genotypes appear likely (at the 1% significance level) to have been derived from another population. An asterisk (*) indicates that an individual’s
multilocus genotype is significantly improbable (at the 5% level), given the allele frequencies of its own population.

partitions are likely to generate similar conclusions, Oceanic individuals and into two clusters with Asian
individuals. The Oceanic samples as a group fall intogiven the small number of internal branches. In general,

each sampled individual falls within a cluster with other several clusters. One of these (D) is associated with a
European cluster (B) and a mixed European/Australianmembers of his or her regional group. All individuals

sampled in Africa, for instance, fall into a single cluster cluster (C). The others (E and G) form a larger cluster
with a mixed European/Australian cluster (F). The com-(A), as do 33 of 36 individuals of Asian origin (cluster

H / I). Although 13 of 24 European individuals form position of these roughly defined clusters is summarized
in table 3.a single cluster (B), the European samples are somewhat

scattered. European samples fall into two clusters with The consistency of the 12 population tree (fig. 5) re-
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Table 3

Composition of Clusters of Tree Shown in Figure 5

CLUSTER

REGION A B C D E F G H I OUTLIERS TOTAL

Africa 36 36
Europe 13 4 3 3 1 24
Oceania 2 14 11 1 20 48
Asia 22 11 3 36
Total 36 13 6 14 11 4 20 25 12 3 144

NOTE.—Population samples have been grouped according to their regions of origin.

flects that of the two population trees (fig. 4); although individuals appeared to be at least partially derived from
a population other than their own but from within theirthe tree is roughly consistent at the regional level (as

shown schematically in fig. 1c), within-region consis- own region. Seven of these eight individuals fall into
clusters with other members of their region, as is ex-tency at the population level is rare. The Melanesian

sample, with 11 of 12 individuals falling into a single pected. The exception is the Australian, ‘‘n,’’ with a set
of genotypes that appears to be derived from severalcluster (E), is an exception. For seven of the remaining

population samples (three African, two New Guinean, populations (table 4). In the remaining 16 cases, the
genotypes appeared to be consistent with affiliation withJapanese, and two northern European), at least half of

the individuals form clusters, of two or three each, with at least one population from another region of the
world. Of these 16, 7 fall into clusters consisting primar-other members of their population sample. The Cambo-

dian, Chinese, Australian, and Italian individuals, on ily of individuals of another region—that is, are outliers.
These individuals are the most likely to be of mixedthe other hand, fall more often into small clusters with

members of other samples. Overall, 65 of 144 individu- ancestry. Power calculations indicated that, in all but
10 of the 1,584 tests, the power (probability of rejectingals are most closely associated, in this tree, with mem-

bers of their own sample. the null hypothesis when it is false) is ú.95. All of the
exceptions are for comparisons of northern EuropeanPrevious analyses indicated that genotype frequencies

for the combined New Guinean sample (coastal plus individuals versus the Italian (Trino) sample. The allele
frequencies in these two samples are so similar that therehighland individuals) deviated from those expected un-

der the assumption of Hardy-Weinberg equilibrium (Lin is insufficient power, with the available number of loci,
for detection of immigration between the two popula-et al. 1994). We therefore chose to consider the set of

New Guineans as two samples (those from the highland tions.
We located each of the 24 individuals who may haveregions and those from coastal areas). Although these

two groups do not form distinct clusters in the tree mixed ancestry in the tree shown in figure 5, and in 9
cases we found them to be outliers—that is, clusteredshown in figure 5, highland individuals form pairs in 8

of 12 cases, and coastal individuals form pairs in 6 of with members of other regional groups. For instance,
the three Asian individuals (i–k) not included in any of12 cases. In no instance does a highland individual form

a pair with a coastal individual. the nine clusters each have genotypes consistent with
allele frequencies in non-Asian populations. Of the four

Very Recent Immigration Events European individuals, two (v and w in clusters H and
I) who fall into the Asian clusters have genotypes consis-By performing 1,584 (144 individuals 1 11 popula-

tions) ratio tests, we were able to identify those individu- tent with allele frequencies in one or more Asian popula-
tions. An Italian individual (o) with significant ratiosals some of whose recent ancestors appear to have immi-

grated from another of the populations. Although, of falls into a mixed cluster (F). The only Melanesian sam-
ple (q) falling outside of the Melanesian cluster appearsthe 1,584 tests, we would expect 1%, or Ç16, to give

significant results by chance, many more (45) showed similar to the coastal New Guinean sample. Two Austra-
lians fall into small clusters with European individuals.significance. We identified 24 individuals (3 African, 5

European, 4 Asian, and 12 Oceanic) whose genotypes The multilocus genotype of one of these individuals (f in
cluster C) appears similar to those of the two Europeanare significantly different (at the 1% level) from the ex-

pectation under a null hypothesis of no recent immigra- samples and the Chinese sample, whereas that of the
other (n in cluster F), remarkably, appears similar totion (fig. 5 and table 4). The genotypes of eight of these
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Table 4

Twenty-Four Individuals Identified as Possibly Having Mixed Ancestry, on the Basis of the Ratio Test, Given Individual’s Set of Genotypes
for Multiple Loci

AFRICA EUROPE OCEANIA ASIA

CAR ZAI SEN NEU TRO AUS MEL NGh NGc CAM CHI JPN

CAR b** b a
ZAI c**
NEU d d** e
TRO o o, w* v** v**, w

AUS n�** n�** n�* f*, n�* f* n�* g** n�*, p� f**, n�**, p�** n�*, p�**

MEL l** m� q** l
NGh h� s
NGc t t** r u**

CAM k� k�** x�* x� x�**
JPN i� j�*

NOTE. For details of the test, see the text and the paper by Rannala and Mountain (in press). For these tests, the significance level obtained
through the Monte Carlo approach is P õ .01 (specific P values for some entries are given below). Designations of individuals (a–x) are as
defined in figure 5. Each individual is located within the row of his or her own sample and in the column(s) of the sample(s) to which his or
her multilocus genotype appears to be similar. Underlining denotes that the individual was also considered in the STR tree (Bowcock et al.
1994); and a full box denotes that the individual falls outside his or her regional cluster in the STR tree.

* P õ .001.
** .001 õ P õ .005.

those of eight different samples, including African, samples, such as the Karitiana, fell into a single cluster.
Close to half of the individuals considered in this micro-Asian, and European population samples.

Examining the probability that each individual’s ge- satellite study have also been examined in the RFLP
genotype analysis. We were able, therefore, to comparenotype was drawn from his or her population, we de-

tected no individuals whose genotypes appear improba- the trees inferred from the two types of markers. The
STR study included 148 individuals (including five pairsble (at the 1% level) under a hypothesis of no recent

immigration. The genotypes of 11 individuals appeared related) from 14 populations, whereas the RFLP study
included 144 individuals (including two pairs related)improbable at the 5% level. These individuals are indi-

cated by an asterisk (*) in figure 5. Because of the large from 12 populations. Sixty-seven individuals from eight
populations were considered in both studies. Both treesnumber of tests performed (144), we expect to see seven

significant cases simply by chance. Our detection of 11 show consistency at the regional level, in that African
individuals tend to cluster, as do Asian, Oceanic, andindividuals is somewhat higher than this, and we there-

fore conclude that a subset of these individuals is likely European individuals. There are 16 exceptions in the
STR tree (dividing the tree into five regional clusters),to have immigrant ancestry. Of the 11 individuals, 6

are among the 24 individuals whose genotypes showed and there are 14 exceptions in the RFLP tree (dividing
the tree into one African cluster [A], one Asian clustersignificance in the ratio tests described above. Several of

the remaining five individuals are found at the tips of [H / I], one European cluster [B], and two Oceanic
clusters [C / D and E / F / G]). At the populationthe longer branches in the tree. These individuals may

have an immigrant ancestor from a population not con- level, the Melanesians cluster in both trees. Other popu-
lations (e.g., Central African Republic Pygmy and Zairesidered in this study.
Pygmy) cluster more consistently in the STR tree. This

Comparison with STR Tree of Individuals may be due, in part, to the smaller number of individuals
considered per population, the inclusion of more relatedIn a previous study of 30 STR (i.e., microsatellite)

markers, a tree relating 148 individuals was inferred. pairs, and the consideration of a different set of popula-
tions. At the lowest possible level of clustering, onlyOf these 148, 129 fell into a clustered pair with an

individual from their own global region (Bowcock et twice do two individuals who are paired in the RFLP
tree appear as a clustered pair in the STR tree.al. 1994). Within the regional groups, some population

/ 9a35$$se19 09-08-97 16:30:26 ajhga UC-AJHG



715Mountain and Cavalli-Sforza: Multilocus Genotypes and Human Evolution

Although the two data sets lead to trees with a similar Implications of Simulation Study for Present Analysis
degree of consistency at the regional level, they are both The tree relating 144 individuals, inferred from an
less consistent at the population level, and they differ average of 75 RFLP genotypes/individual, is roughly
dramatically in the details. Nonetheless, some individu- consistent at the regional level. Similarly, trees inferred
als appear to be outliers in both data sets. Of the 16 for two populations of different regions are most often
outlying individuals in the STR tree, 10 are also outliers consistent (70% of cases). The latter trees most closely
in the RFLP study. We find that, of these 10, 7 (h, i, k, parallel those examined in the simulation study de-
m, n, p, and x; fig. 5 and table 4) have significantly low scribed above. These simulations suggest two models of
ratios, given their multilocus RFLP genotypes. Given human evolution (without and with a population size
that 24 of the 144 individuals in the RFLP study show increase) that would lead to consistency between an indi-
significance, we expect õ2 of the 10 STR outlying indi- vidual tree and population history. Considering the re-
viduals to show significance by chance. There is evidence sults in figure 2a, we would conclude that the regional
from two independent studies, therefore, that many, if groups have been effectively isolated from one another
not all, of these seven individuals are of mixed ancestry. for t Å .10–.15: these are the values for which 100 and

50 loci, respectively (we considered an average of 75
loci), lead to an Ç70% chance of consistency. If it is

Discussion assumed that populations have maintained a roughly
constant effective size of Ç10,000 individuals during

We have examined the multilocus RFLP genotypes of the course of recent human evolution, these values corre-
144 individuals from 12 populations of Africa, Asia, spond to 2,000–3,000 generations, or 50,000–75,000
Europe, and Oceania. The fraction of these polymor- years (25-year generations are assumed). Thus, given a
phisms that have been strongly influenced by natural constant population size model, the RFLP data indicate
selection appears to be small (Bowcock et al. 1991b): that the African, Asian, and European plus Oceanic
estimates based on this set of markers are therefore likely groups are likely to have been isolated from one another
to reflect patterns from neutral loci. We summarized for approximately this length of time. Populations
these data graphically by inferring trees relating the indi- within the regional groups, showing less consistency,
viduals (figs. 4 and 5). The trees inferred for two popula- appear to have been isolated from one another for less
tions of the same region are almost always inconsistent, time.
whereas most of the trees inferred for two populations of It is very unlikely, however, that human populations
different regions are consistent. Exceptions in the latter have maintained a constant size during this period of
cases always involve the European and Australian sam- time. Although the overall long-term effective popula-
ples (fig. 4). In the 12 population tree, individuals tend tion size for humans has been estimated to be Ç10,000
to fall into clusters with other individuals from the same individuals, it is likely that the individual ancestral pop-
region (table 3). There is less consistency, however, at ulations within the global regions were initially small
the population level: for only one sample, the Melane- and subsequently expanded (Shields et al. 1993). Incor-
sian, do the majority (11 of 12) individuals form a clus- porating even a moderate size increase (5–10 fold) into
ter that includes no individuals of another population, the simulation model, we find consistency between the
and this sample includes two pairs of related individuals. tree clustering and population affiliation, even if popula-
Nonetheless, nearly half of the 144 individuals form a tions have been separated for t Å õ.05, or õ1,000 gen-
cluster, of at least two individuals, with members of erations (25,000 years), if N Å 10,000 (fig. 2b). We
their own population sample. conclude that populations within regional groups, which

In order to interpret these graphic summaries of the do not show consistency in the tree shown in figure 5,
data, we need expectations under various models of pop- have been isolated from one another for õ25,000 years.
ulation history. We must also consider how the number If some of the regional ancestral populations also under-
of individuals per population and the number of loci went expansion from initial sizes of 2,000–5,000 indi-
per individual influence the pattern of the tree. As has viduals, these groups need not have been separated from
been summarized above (see Subjects and Methods), we one another for as long as 50,000 years.
performed a simulation study designed to provide such

Admixture and Gene Flow among Populationsexpectations, at least under a set of simplified models.
In that study, we considered the effects of the length The lengths of separation times suggested above were
of time that populations have been isolated from one obtained on the assumption that there is complete isola-
another, of population expansions, of the number of tion of populations, after separation. They therefore
individuals per population included, and of the number might be termed ‘‘effective’’ separation times, analogous
of loci tested. Results of those simulations enable us to to effective population sizes. Such estimated effective

times would be shorter than actual separation times, ifbegin to interpret the tree of individuals.
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gene flow had taken place among populations after they gene flow from Southeast Asia to northwestern Australia
has had a major genetic impact (Roberts-Thomson ethad separated. It may well be that the populations

within regional groups separated as long as 50,000– al. 1996). According to that study, populations from the
central part of the continent appear to have received less75,000 years ago but that gene flow among the popula-

tions continued thereafter. At this point we have incor- immigration from outside Australia.
porated neither gene flow nor population admixture into

Population Samples and Treethe simulation study, and so we have yet to determine
the magnitude of the effect of these factors on the pattern The tree shown in figure 5 and the trees summarized

in figure 4 are possibly the consequence not only of theof consistency of the individual tree. Models incorporat-
ing admixture and gene flow are certainly necessary to history of these populations but also of the particular

nature of these samples. As indicated above, for exam-consider; although strictly bifurcating models are un-
likely to represent the evolutionary history of modern ple, the Australian sample may include some individuals

of mixed ancestry. This may explain why clusters ofhumans, bifurcating models that incorporate the two
factors might be reasonably realistic. There is evidence, European and Oceanic individuals appear in the tree.

More generally, these samples were certainly not se-for example, that the European population arose as an
admixture, having originated through direct or indirect lected as a random global sample of 144 individuals.

Nor were the 12 populations chosen at random; instead,genetic contributions from neighboring Asian and Afri-
can populations (Bowcock et al. 1991b). they were selected, at least in some cases, because the

populations were believed to have been relatively free
Trees and Recent Immigration Events of recent admixture. We would therefore expect a tree

inferred for samples chosen at random to show muchWe find strong evidence, from these data as well as
from an independent set of DNA markers, that a number less consistency. An additional complicating factor is

the bias in the ascertainment of these polymorphismsof the 144 individuals are of mixed ancestry (table 4).
Three of these individuals (i–k) appear as the outliers (Mountain and Cavalli-Sforza 1994; Rogers and Jorde

1996). Most were included for study because they werein the tree shown in figure 5. Several others (f, n, o, v,
and w) fall into clusters with members of other regions. found to be polymorphic in a small European sample.

The heterozygosity values for the European samples,Individuals i, k, and n not only are found to have signifi-
cantly low ratios in the immigration test but also appear therefore, are higher than for those for other samples.

This may have reduced the consistency of the Europeanas outliers in both the STR tree and the RFLP tree. These
individuals are very likely to have immigrant ancestry. sample.

In summary, we have inferred a tree relating 144 indi-Eleven individuals (denoted by an asterisks in fig. 5)
have improbable genotypes, if it is assumed that there viduals sampled from 12 populations of four world re-

gions. Such a tree enables us to summarize the genotypehas been no recent immigration and in view of the allele
frequencies of their populations. Of these 11, some have data at the level of the individual, eliminating the usually

necessary assumption that all individuals are equallygenotypes that appear to have been drawn from other
populations, whereas others are peripheral in the tree representative of their populations. This tree is consis-

tent at the regional level, with exceptions, but is incon-shown in figure 5. The latter may have ancestors from
populations not considered in this study. sistent at the population level. Simulations indicate that

the extent of consistency at the regional level may haveOnly the Senegalese and Chinese samples appear to
include none of these possibly mixed individuals; other resulted either from isolation of these regions for

§50,000 years or from a shorter isolation period withsamples include several. Four of the 12 Australian indi-
viduals, for instance, have multilocus genotypes that subsequent population expansion. The lack of consis-

tency at the population level may be the result of rela-might easily have been drawn from other populations.
The histograms shown in figure 3 reveal a similar pat- tively short separation times among populations within

regions (with no gene flow or admixture). Other possibletern, in that the Senegalese and Chinese genetic distances
fall within a much narrower range than do those of the explanations for the lack of consistency include the for-

mation of populations through admixture and the inter-Australian sample. This finding is consistent with the
conclusion, reached elsewhere (Lin et al. 1994), that mixing of populations through gene flow. We have iden-

tified a subset of individuals some of whose ancestorsthe Australian sample is mixed. Such mixture is likely,
considering that samples (placental tissue from individu- may have recently immigrated to the current population.

These individuals too have probably reduced the consis-als at a hospital) were initially obtained for the purpose
of studying mtDNA; sample collection may have been tency of the tree. We conclude that the data are consis-

tent with the hypothesis that, although regional groupsconducted without extensive information on paternal
ancestry. A separate study, which considered a-globin– may have been effectively isolated from one another for

as many as §50,000 years, populations within regionslocus haplotypes of Oceanic populations, indicated that
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